Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,4-Bis(2-chlorophenyl)-3-azabicyclo-[3.3.1]nonan-9-one

P. Parthiban,^a V. Ramkumar,^b Min Sung Kim,^a Kwon Taek Lim^a and Yeon Tae Jeong^a*

^aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and ^bDepartment of Chemistry, IIT Madras, Chennai, Tamilnadu, India Correspondence e-mail: ytjeong@pknu.ac.kr

Received 14 July 2008; accepted 19 July 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.011 Å; R factor = 0.088; wR factor = 0.309; data-to-parameter ratio = 13.3.

The molecular structure of the title compound, $C_{20}H_{19}Cl_2NO$, reveals chair conformations for both six-membered rings of the bicyclic system. Both 2-chlorophenyl groups adopt equatorial dispositions with the chloro substituents oriented towards the carbonyl group; the aryl groups are orientated at an angle of 28.64 $(3)^{\circ}$ with respect to each other.

Related literature

For related literature, see: Buxton et al. (1996); Jeyaraman et al. (1981); Zefirov et al. (1990); Vijayalakshmi et al. (2000); Web et al. (1967); Cremer & Pople (1975).

Experimental

Crystal data

в

$C_{20}H_{19}Cl_2NO$	$\gamma = 98.13 (3)^{\circ}$
$M_r = 360.26$	V = 874.6 (3) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 7.7070 (15) Å	Mo $K\alpha$ radiation
b = 10.680 (2) Å	$\mu = 0.38 \text{ mm}^{-1}$
c = 11.000 (2) Å	T = 298 (2) K
$\alpha = 101.78 \ (3)^{\circ}$	$0.32 \times 0.25 \times 0.20 \text{ mm}$
$\beta = 92.82.(3)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 1999)	
$T_{\min} = 0.889, \ T_{\max} = 0.928$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.087$	H atoms treated by a mixture of
$wR(F^2) = 0.309$	independent and constrained
S = 1.19	refinement
2949 reflections	$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
221 parameters	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

9470 measured reflections 2949 independent reflections

 $R_{\rm int} = 0.026$

2478 reflections with $I > 2\sigma(I)$

Data collection: APEX2 (Bruker-Nonius, 2004); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker-Nonius, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This research was supported by the second stage of the BK 21 program and Pukyong National University under the 2008 Postdoc program. The authors acknowledge the Department of Chemistry, IIT, Madras, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2162).

References

Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker-Nonius (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison,

Wisconsin, USA.

Buxton, S. R. & Roberts, S. M. (1996). Guide to Organic Stereochemistry. London: Longman.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vijayalakshmi, L., Parthasarathi, V., Venkatraj, M. & Jeyaraman, R. (2000). Acta Cryst. C56, 1240-1241.

Web, N. C. & Becker, M. R. (1967). J. Chem. Soc. B, pp. 1317-1321.

Zefirov, N. S. & Palyulin, V. A. (1990). Top. Stereochem. 20, 171-230.

Acta Cryst. (2008). E64, o1586 [doi:10.1107/S160053680802268X]

2,4-Bis(2-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one

P. Parthiban, V. Ramkumar, M. S. Kim, K. T. Lim and Y. T. Jeong

Comment

Since the biological activities mainly depend on the stereochemistry (Jeyaraman & Avila, 1981; Buxton & Roberts, 1996) it is worthwhile to study the stereochemistry and conformation of the organic molecules. Generally, these classes of bicyclic system prefer chair-chair conformation (Zefirov & Palyulin, 1990; Vijayalakshmi *et al.*, 2000) among the three possible chair-chair, chair-boat and boat-boat conformations. However, NMR studies of this compound shows ambiguity over the conformation, due to the presence of electron withdrawing chloro substituents on *ortho* position of the either phenyl rings. Hence, we have carried out this X-ray analysis to establish the three dimensional structure.

The title compound $C_{20}H_{19}Cl_2NO$, exists in chair-chair conformation with equatorial orientations of the *ortho* phenyl groups on both side of the secondary amino group with the torsion angles C8—C6—C7—C15 and C8—C2—C1—C9 are 178.41 (6) ° and 179.12 (6) ° respectively.

In both aryl groups, the chloro substituents point upwards *i.e.*, towards the carbonyl group and the aryl groups are orientated at an angle of 28.64 (3) ° to each other. A study of torsion angles, asymmetry parameters and least-squares plane calculation shows that the piperidine ring adopts near ideal chair conformation with a deviation of the ring atoms N1 and C8 from the C1/C2/C6/C7 plane by -0.630 (3) Å and 0.708 (3)Å respectively, $Q_T = 0.593$ (8)Å (D.Cremer & Pople, (1975)) whereas the cyclohexane ring atoms C4 and C8 deviate from the C2/C3/C5/C6 plane by -0.530 (4) Å and 0.730 (3) Å respectively ($Q_T = 0.565$ (8) Å.). Thus, indicating a deviation from the ideal chair conformation of the cyclohexane part in the title compound (Web & Becker, 1967).

Experimental

A mixture of cyclohexanone (0.05 mol) and *ortho* chlorobenzaldehyde (0.1 mol) was added to a warm solution of ammonium acetate (0.75 mol) in 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate till the yellow color formed during the mixing of the reactants and allowed to stir till the formation of the product. At the end, the pale yellow color azabicyclic ketone was separated by filtration and washed with 1:5 ethanol-ether mixture till the solid become colourless. Recrystallization of the compound from isopropyl alcohol (IPA) gave colourless crystals of 2,4-bis(2-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one.

¹H NMR (400 MHz, CDCl3, p.p.m.): 8.05 (dd, J = 8.0, 1.2 Hz), 7.39 (dt, J = 7.0, 1.6 Hz), 7.27 (dt, J = 7.6, 1.8 Hz), 4.85 (d, H-2a, H-4a, J = 2.4 Hz), 2.88 (m, H-7a), 2.77 (s, H-1, 5), 1.90 (d, H-8 e, J = 4.8 Hz), 1.87 (dd, H-6 e, J = 4.8, 1.6 Hz), 1.81–1.71 (m, H-8a, H-6a), 1.66 (bs, N—H), 1.41 (quintet, H-7 e).

Refinement

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98Å and

methylen C—H = 0.97 Å. The displacement parameters were set for phenyl, methylen and aliphatic H atoms at $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. *ORTEP* view of the title molecule with atoms represented as 30% probability ellipsoids.

2,4-Bis(2-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one

Crystal data	
C ₂₀ H ₁₉ Cl ₂ NO	Z = 2
$M_r = 360.26$	$F_{000} = 376$
Triclinic, PT	$D_{\rm x} = 1.368 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 7.7070 (15) Å	Cell parameters from 5271 reflections
b = 10.680 (2) Å	$\theta = 2.4 - 28.3^{\circ}$
c = 11.000 (2) Å	$\mu = 0.38 \text{ mm}^{-1}$
$\alpha = 101.78 \ (3)^{\circ}$	T = 298 (2) K
$\beta = 92.82 \ (3)^{\circ}$	Rectangular, colourless
$\gamma = 98.13 \ (3)^{\circ}$	$0.32 \times 0.25 \times 0.20 \text{ mm}$
$V = 874.6 (3) \text{ Å}^3$	

Data collection

Bruker APEXII CCD area-detector diffractometer	2949 independent reflections
Radiation source: fine-focus sealed tube	2478 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1999)	$h = -8 \rightarrow 9$
$T_{\min} = 0.889, T_{\max} = 0.928$	$k = -12 \rightarrow 12$
9470 measured reflections	$l = -12 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.088$	H atoms treated by a mixture of

independent and constrained refinement

$wR(F^2) = 0.309$	$w = 1/[\sigma^2(F_o^2) + (0.0815P)^2 + 8.5055P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.19	$(\Delta/\sigma)_{max} < 0.001$
2949 reflections	$\Delta \rho_{max} = 0.70 \text{ e} \text{ Å}^{-3}$
221 parameters	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and isotro	opic or e	quivalent	isotropi	ic disi	vlacement	parameters	$(Å^2$)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.2417 (9)	0.0189 (6)	0.1674 (6)	0.0272 (15)
H1	0.3149	0.0273	0.0982	0.033*
C2	0.3606 (9)	0.0002 (7)	0.2788 (7)	0.0324 (16)
H2	0.4171	-0.0762	0.2512	0.039*
C3	0.2618 (10)	-0.0165 (8)	0.3956 (7)	0.0377 (18)
H3A	0.1619	-0.0848	0.3702	0.045*
H3B	0.3398	-0.0445	0.4531	0.045*
C4	0.1957 (11)	0.1052 (8)	0.4652 (7)	0.0425 (19)
H4A	0.1688	0.0940	0.5479	0.051*
H4B	0.0879	0.1153	0.4215	0.051*
C5	0.3321 (11)	0.2301 (8)	0.4770 (7)	0.0433 (19)
H5A	0.2734	0.3047	0.5019	0.052*
H5B	0.4222	0.2325	0.5425	0.052*
C6	0.4220 (9)	0.2412 (7)	0.3553 (7)	0.0339 (17)
H6	0.5171	0.3153	0.3738	0.041*
C7	0.2987 (9)	0.2553 (6)	0.2452 (7)	0.0291 (15)
H7	0.3703	0.2650	0.1756	0.035*
C8	0.5010 (9)	0.1176 (7)	0.3144 (7)	0.0329 (16)
C9	0.0965 (9)	-0.0967 (6)	0.1234 (6)	0.0256 (14)

C10	-0.0743 (10)	-0.0946 (8)	0.1630 (7)	0.0360 (17)
H10	-0.0997	-0.0198	0.2142	0.043*
C11	-0.2061 (10)	-0.2016 (8)	0.1276 (8)	0.0430 (19)
H11	-0.3183	-0.1971	0.1539	0.052*
C12	-0.1697 (11)	-0.3152 (8)	0.0528 (8)	0.045 (2)
H12	-0.2570	-0.3873	0.0312	0.054*
C13	-0.0067 (11)	-0.3211 (7)	0.0112 (7)	0.0391 (18)
H13	0.0162	-0.3960	-0.0413	0.047*
C14	0.1257 (9)	-0.2140 (7)	0.0478 (6)	0.0297 (15)
C15	0.2078 (9)	0.3750 (7)	0.2778 (7)	0.0292 (15)
C16	0.2911 (10)	0.4984 (7)	0.2705 (7)	0.0335 (16)
C17	0.2106 (12)	0.6063 (8)	0.2961 (8)	0.047 (2)
H17	0.2695	0.6865	0.2893	0.057*
C18	0.0388 (12)	0.5946 (8)	0.3328 (9)	0.049 (2)
H18	-0.0172	0.6670	0.3512	0.058*
C19	-0.0466 (11)	0.4748 (8)	0.3413 (8)	0.046 (2)
H19	-0.1608	0.4666	0.3656	0.055*
C20	0.0360 (10)	0.3662 (7)	0.3141 (7)	0.0347 (17)
H20	-0.0241	0.2861	0.3202	0.042*
Cl1	0.3337 (3)	-0.2278 (2)	-0.0080 (2)	0.0567 (7)
Cl2	0.5064 (3)	0.5208 (2)	0.2224 (2)	0.0501 (7)
N1	0.1657 (8)	0.1389 (5)	0.2038 (6)	0.0290 (13)
O1	0.6563 (7)	0.1143 (6)	0.3131 (6)	0.0523 (16)
H1A	0.096 (12)	0.146 (8)	0.149 (9)	0.05 (3)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.023 (3)	0.028 (3)	0.030 (4)	0.006 (3)	0.003 (3)	0.001 (3)
C2	0.027 (4)	0.031 (4)	0.038 (4)	0.008 (3)	-0.004 (3)	0.005 (3)
C3	0.036 (4)	0.041 (4)	0.039 (4)	0.005 (3)	-0.004 (3)	0.017 (3)
C4	0.045 (5)	0.053 (5)	0.032 (4)	0.010 (4)	0.008 (4)	0.011 (4)
C5	0.050 (5)	0.043 (5)	0.033 (4)	0.010 (4)	-0.004 (4)	0.001 (3)
C6	0.025 (4)	0.029 (4)	0.043 (4)	-0.002 (3)	-0.007 (3)	0.002 (3)
C7	0.025 (4)	0.028 (3)	0.035 (4)	0.004 (3)	0.004 (3)	0.008 (3)
C8	0.028 (4)	0.036 (4)	0.035 (4)	0.006 (3)	0.000 (3)	0.008 (3)
C9	0.024 (3)	0.030 (3)	0.023 (3)	0.004 (3)	0.001 (3)	0.006 (3)
C10	0.029 (4)	0.039 (4)	0.038 (4)	0.010 (3)	0.005 (3)	0.000 (3)
C11	0.027 (4)	0.056 (5)	0.045 (5)	0.000 (4)	0.005 (3)	0.013 (4)
C12	0.048 (5)	0.039 (4)	0.042 (5)	-0.011 (4)	-0.007 (4)	0.011 (4)
C13	0.057 (5)	0.027 (4)	0.030 (4)	0.003 (3)	-0.003 (4)	0.002 (3)
C14	0.030 (4)	0.034 (4)	0.026 (3)	0.011 (3)	0.002 (3)	0.004 (3)
C15	0.028 (4)	0.029 (4)	0.031 (4)	0.005 (3)	0.000 (3)	0.006 (3)
C16	0.032 (4)	0.029 (4)	0.038 (4)	0.002 (3)	-0.001 (3)	0.005 (3)
C17	0.056 (5)	0.030 (4)	0.057 (5)	0.008 (4)	0.005 (4)	0.012 (4)
C18	0.052 (5)	0.040 (5)	0.057 (5)	0.024 (4)	0.007 (4)	0.005 (4)
C19	0.042 (5)	0.051 (5)	0.047 (5)	0.019 (4)	0.011 (4)	0.008 (4)
C20	0.032 (4)	0.033 (4)	0.040 (4)	0.008 (3)	0.004 (3)	0.009 (3)

Cl1 Cl2 N1 O1	0.0469 (13) 0.0386 (12) 0.025 (3) 0.023 (3)	0.0574 (14) 0.0390 (11) 0.025 (3) 0.058 (4)	0.0617 (14) 0.0702 (15) 0.035 (3) 0.076 (4)	0.0199 (10) -0.0042 (8) 0.005 (2) 0.010 (3)	0.0162 (11) 0.0115 (10) -0.005 (3) 0.005 (3)	-0.0077 (11) 0.0113 (10) 0.004 (3) 0.014 (3)
Geometric paran	neters (Å. °)					
	(11,)	1 452 (0)		C14		00 (10)
CI—NI		1.4/3 (9)	C9—	C14	1.4	08 (10)
C1 = C9		1.524 (9)	C9	C10	1.4	08(10)
CI = C2		1.556 (10)	C10-	-CII	1.3	93 (11)
C1 - H1		0.9800	C10-	—п10 С12	0.9	300
$C_2 = C_8$		1.507(10) 1.554(11)	C11-	-C12	1.5	92 (12)
$C_2 = C_3$		0.0800	C11-	-n11 C13	0.9	500 64 (12)
C_2 — C_4		1.534(11)	C12-	—————————————————————————————————————	0.9	300
С3—Н3А		0.9700	C12-		1.3	98 (10)
C3_H3B		0.9700	C13	_H13	0.9	300
C3—113B		1 555 (11)	C13-		1.7	59(7)
С4 С5		0.9700	C15-	-C20	1.7	98 (10)
C4—H4B		0.9700	C15-		1.4	(10)
C5—C6		1 555 (11)	C16-		1 372 (11)	
C5—H5A		0.9700	C16-	Cl2	1 766 (8)	
С5—Н5В		0.9700	C17-	C18	1.3	99 (12)
C6—C8		1.525 (10)	C17–	-H17	0.9	300
С6—С7		1.547 (10)	C18–	C19	1.3	77 (12)
С6—Н6		0.9800	C18–	-H18	0.9	300
C7—N1		1.472 (9)	C19–	C20	1.3	87 (11)
C7—C15		1.531 (10)	C19–	-H19	0.9	300
С7—Н7		0.9800	C20–	-H20	0.9	300
C8—O1		1.203 (9)	N1—	-H1A	0.8	1 (9)
N1—C1—C9		110.5 (5)	01—	-C8—C2	124	.3 (7)
N1—C1—C2		109.7 (6)	01—	-C8C6	124	.1 (7)
C9—C1—C2		111.4 (6)	C2—	-C8C6	111	.6 (6)
N1—C1—H1		108.4	C14-	C9C10	115	.8 (6)
С9—С1—Н1		108.4	C14-	C9C1	122	2.9 (6)
С2—С1—Н1		108.4	C10-	C9C1	121	.2 (6)
C8—C2—C3		108.7 (6)	C11–	С10С9	121	.7 (7)
C8—C2—C1		107.6 (6)	C11–	C10H10	119	.1
C3—C2—C1		114.4 (6)	С9—	C10—H10	119	.1
С8—С2—Н2		108.7	C12-	C11C10	120	0.0 (7)
С3—С2—Н2		108.7	C12-		120	0.0
С1—С2—Н2		108.7	C10-	C11H11	120	0.0
C4—C3—C2		115.2 (6)	C13-	C12C11	120	0.3 (7)
С4—С3—НЗА		108.5	C13–	C12H12	119	.9
С2—С3—НЗА		108.5	C11–	—С12—Н12	119	.9
C4—C3—H3B		108.5	C12-	C13C14	119	.5 (7)
С2—С3—Н3В		108.5	C12-	—С13—Н13	120	0.2
НЗА—СЗ—НЗВ		107.5	C14-	—С13—Н13	120	0.2
C3—C4—C5		112.7 (7)	C13-	—С14—С9	122	2.6 (7)

C3—C4—H4A	109.0	C13—C14—Cl1	117.5 (6)
С5—С4—Н4А	109.0	C9—C14—Cl1	119.9 (5)
C3—C4—H4B	109.0	C20—C15—C16	116.6 (7)
C5—C4—H4B	109.0	C20—C15—C7	121.6 (6)
H4A—C4—H4B	107.8	C16—C15—C7	121.8 (6)
C6—C5—C4	114.2 (6)	C17—C16—C15	122.8 (7)
С6—С5—Н5А	108.7	C17—C16—Cl2	116.5 (6)
С4—С5—Н5А	108.7	C15-C16-Cl2	120.7 (6)
С6—С5—Н5В	108.7	C16—C17—C18	119.3 (8)
C4—C5—H5B	108.7	C16—C17—H17	120.4
H5A—C5—H5B	107.6	С18—С17—Н17	120.4
C8—C6—C7	107.8 (6)	C19—C18—C17	119.4 (7)
C8—C6—C5	107.0 (6)	C19—C18—H18	120.3
C7—C6—C5	115.4 (6)	C17—C18—H18	120.3
С8—С6—Н6	108.9	C18—C19—C20	120.7 (8)
С7—С6—Н6	108.9	C18—C19—H19	119.7
С5—С6—Н6	108.9	С20—С19—Н19	119.7
N1—C7—C15	109.7 (5)	C19—C20—C15	121.2 (7)
N1—C7—C6	111.0 (6)	С19—С20—Н20	119.4
C15—C7—C6	112.1 (6)	С15—С20—Н20	119.4
N1—C7—H7	107.9	C7—N1—C1	113.5 (5)
С15—С7—Н7	107.9	C7—N1—H1A	113 (6)
С6—С7—Н7	107.9	C1—N1—H1A	110 (6)
N1—C1—C2—C8	-58.3 (7)	C9—C10—C11—C12	1.1 (12)
C9—C1—C2—C8	179.2 (6)	C10-C11-C12-C13	-1.8 (12)
N1—C1—C2—C3	62.6 (8)	C11—C12—C13—C14	2.4 (12)
C9—C1—C2—C3	-60.0 (8)	C12-C13-C14-C9	-2.4 (11)
C8—C2—C3—C4	50.7 (8)	C12-C13-C14-Cl1	179.6 (6)
C1—C2—C3—C4	-69.5 (8)	C10-C9-C14-C13	1.7 (10)
C2—C3—C4—C5	-41.8 (9)	C1—C9—C14—C13	177.8 (7)
C3—C4—C5—C6	44.1 (9)	C10-C9-C14-Cl1	179.6 (5)
C4—C5—C6—C8	-54.4 (8)	C1—C9—C14—Cl1	-4.2 (9)
C4—C5—C6—C7	65.4 (9)	N1-C7-C15-C20	25.3 (9)
C8—C6—C7—N1	55.2 (8)	C6—C7—C15—C20	-98.5 (8)
C5—C6—C7—N1	-64.2 (8)	N1—C7—C15—C16	-153.5 (7)
C8—C6—C7—C15	178.4 (6)	C6—C7—C15—C16	82.6 (8)
C5—C6—C7—C15	59.0 (8)	C20-C15-C16-C17	-0.6 (11)
C3—C2—C8—O1	115.3 (8)	C7—C15—C16—C17	178.3 (7)
C1—C2—C8—O1	-120.3 (8)	C20-C15-C16-Cl2	-178.7 (6)
C3—C2—C8—C6	-63.3 (8)	C7—C15—C16—Cl2	0.2 (10)
C1—C2—C8—C6	61.1 (8)	C15—C16—C17—C18	0.8 (13)
C7—C6—C8—O1	121.9 (8)	Cl2—C16—C17—C18	179.0 (7)
C5—C6—C8—O1	-113.5 (8)	C16—C17—C18—C19	-0.6 (13)
C7—C6—C8—C2	-59.5 (8)	C17—C18—C19—C20	0.1 (13)
C5—C6—C8—C2	65.1 (7)	C18—C19—C20—C15	0.2 (13)
N1-C1-C9-C14	159.5 (6)	C16—C15—C20—C19	0.0 (11)
C2—C1—C9—C14	-78.4 (8)	C7—C15—C20—C19	-178.8 (7)
N1-C1-C9-C10	-24.5 (9)	C15—C7—N1—C1	178.5 (6)
C2-C1-C9-C10	97.6 (8)	C6—C7—N1—C1	-56.9 (8)

C14—C9—C10—C11	-1.0 (11)	C9—C1—N1—C7	-178.9 (6)
C1—C9—C10—C11	-177.3 (7)	C2—C1—N1—C7	58.0 (8)

